
Incremental Scheduling Engines for
Human Exploration of the Cosmos

John Jaap & Sham Phillips

Mission Operations Laboratory
Marshall Space Flight Center

National Aeronautics and Space Administration
E050, MSPC, AL 35812

John. Jaap @nasa.gov Shaun.Phillips @ nasa.gov

Abstract
As humankind embarks on longer space missions farther
from home, the requirements and environments for
scheduling the activities performed on these missions are
changing. As we begin to prepare for these missions it is
appropriate to evaluate the merits and applicability of the
different types of scheduling engines. Scheduling engines
temporally arrange tasks onto a timeline so that all
constraints and objectives are met and resources are not
overbooked. Scheduling engines used to schedule space
missions fall into three general categories: batch, mixed-
initiative, and incremental. This paper , presents an
assessment of the engine types, a discussion of the impact
of human exploration of the moon and Mars on planning
and scheduling, and the applicability of the different types
of scheduling engines. This paper will pursue the
hypothesis that incremental scheduling engines may have a
place in the new environment; they have the potential to
reduce cost, to improve the satisfaction of those who
execute or benefit from a particular timeline (the
customers), and to allow astronauts to plan their own tasks
and those of their companion robots.

Introduction
The National Aeronautics and Space Administration
(NASA) is charting a bold new course into the cosmos, a
journey that will take humans back to the Moon, and
eventually to Mars and beyond. Currently operations is
the most expensive part of many space missions. The cost
of operating the International Space Station (ISS) is in
excess of one billion dollars per year. One way to reduce
the cost of humanlund’s journey into the cosmos is to
develop new methods of planning and scheduling and new
software to support those methods. The current approach
of scheduling human missions manually needs to be
replaced by automated approaches.

Copyright 0 2005, American Association for Artifcia1 Intelligence
(www.aaai.org). All rights r e s ~ e d .

In addition, every avenue should be taken which can
reduce the stress and tedium of extended space missions
far from home. A mission to Mars is expected to take
about two years; and, during much of the mission, light-
time delays (typically 10 to 15 minutes) will negate voice
conversations with the ground. One good way to address
these human factors issues is to give the astronauts control
over their daily schedule. The current “job-jar’’ paradigm
used on the ISS only allows the astronauts to select
additional optional tasks which use limited resources.
This job jar is prepared on the ground and uplinked daily.
True astronaut control would allow them to schedule or re-
schedule most tasks. For some foreseeable contingencies,
complete crew autonomy in planning and scheduling their
daily tasks may be required.
The search for cost reduction and astronaut autonomy
must take into account that the equipment on the journey
will be the most complex hardware ever developed, the
information sought will be at the cutting edge of human
endeavor, and the procedures will be intricate and
exacting. Scheduling will be made more difficult by a
scarcity of resources. The scheduling system must be able
to handle both the complexity of the tasks and procedures
(to ensure a valid schedule) and the flexibilities of the
procedures and the equipment (to effectively utilize
available resources).

Scheduling Overview
Planning and scheduling software temporally arranges
tasks onto a timeline so that all constraints and objectives
are met and resources are not overbooked. The scheduling
unit or scheduling request addressed by the scheduling
software is an “operations sequence” containing multiple
tasks and the temporal relationships between the tasks.

Example: Dinner is a scheduling unit, which
includes tasks that prepare dmner, eat dinner, and
cleanup. It does not make sense to do only one or
two of these tasks; i.e., to schedule a partial sequence.

The tasks also have an order or temporal
relationship; each follows the other.

The example above is a simple operations sequence. In
the space activity domain, temporal relationships such as
sequential, overlap, during, and avoid are common.
Classically, there are thirteen temporal relationships
possible between two tasks (Allen, 1983). Additionally
the operations sequence can have parallel paths,
repetitions, and other arrangements. In the domain of
human space flight, operations sequences are often
networks, with embedded sub-networks, of tasks. To
emphasize the complexity of the problem, the term task
networks will be used for the remainder of this paper. A
task network with only one task and no temporal
relationships is the trivial case of a network, and is the
simplest scheduling unit.
The tasks of a task network use resources. In the dinner
example, each task would use several resources (power,
microwave oven, water, food stock, waste disposal, etc.) in
affering and specific quantities. Tasks might also have
condition requirements which constrain the scheduling to
happen before, during or after a certain condition, such as
in daylight. Condition requirements are a form of
temporal requirements, but are not labeled as such to
avoid confusion with temporal relationships between the
tasks.
The computer representation of a scheduling unit and its
components is called a model. The quantitative and
associative values in a model are expressed either as rules
or as fields in a dynamic hierarchy of forms.
The core logic of the planning and scheduling system
must understand the models and must temporally arrange
multiple complex task networks to generate a valid
schedule. This logic is commonly called a scheduling
engine. In the space activity domain scheduling is NP-
hard (has no analytical solution), therefore scheduling
engines use algorithmic, heuristic, artificial intelligence,
and human-assisted techniques to solve the space
scheduling problem.
Scheduling engines fall into three general categories: (1)
batch, which operate on multiple models simultaneously,
(2) incremental, which operate on one model at a time,
and (3) mixed-initiative, which is a human and software
working together. In the space domain, most scheduling
systems use more than one of class of scheduling engine.

Classes of Scheduling Engine
Scheduling engines are generally divided into three
classes based on how they handle multiple scheduling
requests. The classes - batch, incremental, and mixed-
initiative - are discussed &low.

Batch Scheduling Engines
Batch engines accept a batch of independent scheduling
requests and put them on a timeline by assigning the start
and stop times of each task. The tasks to be scheduled are
often associated only by the use of the same resources.
Batch engines search for an optimum or near-optimum
timeline based on analytical, heuristic, algorithmic and/or
artificial intelligence techniques. The search methods
used by batch engines must simultaneously meet the
requirements of many tasks and many independent
temporal networks. This requirement places a limitation
on the modeling schema. However, unless all
requirements are modeled, the resulting timeline has little
chance of being valid. Additionally, scheduling a large
number of requests may require considerable computer
resources.
Schedule-repair engines are a special case of batch
engines; the batch of requests fed to the engine is the tasks
already on a timeline, but having constraint and/or
resource violations. Conflicts occur when the initial
timeline was produced with relaxed constraints (limited
overboolung allowed), or when a batch engine is presented
with simplified, or high-level, models and the detailed
models are used by the schedule repair engine. These
engines use algorithmic, heuristic, and/or artificial
intelligence methods to resolve the conflicts. Since the
repair of one violation sometimes introduces other
violations, an iterative approach is implemented. Good
iterative repair engines have logic to avoid local
minimums and find the overall optimum solution and
logic to lock selected tasks so that they will not be moved
by the repair process. A example of an implementation of
an iterative repair engine is the Automated Scheduling
and Planning Environment (ASPEN) (Rabideau, 1999)
developed by the Jet Propulsion Laboratory.
The primary attribute of batch schedulers is the ability to
optimize the use of resources and maximize value of the
timeline. In fact, of the three classes of scheduling
engines, only batch engines can produce near-optimum
timelines. For this reason they are the engine of choice for
unmanned space probes and similar missions. A great
deal of work has been done to optimize these engines with
the goal of developing autonomous scheduling systems to
be installed on spacecrafts.

Incremental Scheduling Engines
Incremental engines add each scheduling request to a
timeline without adjusting the times of already-scheduled
tasks and without introducing constraint violations or
resource overbooking. The core logic of an incremental
engine is usually some form of a greedy algorithm
(Cormen, 2001); that is it makes choices based only on
scheduling the current request. Like batch engines, these
engines may use analytical, heuristic, algorithmic and/or
artificial intelligence techniques. The logic required to

1’

handle the temporal networks of single scheduling request
is less difficult to develop than the logic required by batch
engines which need to handle all the temporal networks in
the timeline. As a result, the models presented to an
incremental engine can be more complex and can capture
more of the requirements or can capture the requirements
more accurately.
As an incremental scheduling engine schedules a request,
it behaves like a batch engine with respect to the multiple
tasks of the scheduling requests. However these tasks
always have temporal relationships to each other and may
share the same resources. All tasks scheduled by previous
scheduling requests are locked and the residual resource
profiles are treated as initial resource profiles for the
current request.
Incremental engines do not provide global optimization.
However, one technique is available to overcome this
limitation. Multiple schedules can be produced by
submitting the scheduling request in different orders; a
figure of merit can be assigned to each schedule; and the
best schedule chosen as the solution. This approach is
commonly called a Monte Carlo solution. Heuristics and
analytical logic can be applied to get a submission order
which gives good results. An example of an incremental
scheduling engine with a Monte Carlo submitter is the
Experiment Scheduling Program (ESP) (Davis, 1988)
developed by the Marshall Space Flight Center.
One novel use for incremental engines arises when
multiple users are building a single timeline; the engine
allows each user to add tasks and be sure that subsequent
action by other users will not change the times of those
tasks. Section 3 of this paper presents an in-depth
discussion to two possible uses of incremental Scheduling
engines that exploit this feature.

Mixed Initiative Scheduling
Mixed-initiative scheduling refers to buildmg a timeline
using a timeline editor; i.e., it is a manual process. Mixed
initiative is used when the user knows requirements that
are not described in the requests, the scheduling engine is
weak, only a few new requests are to be added to the
timeline, or the user wants to control the results. If the
user moves already-scheduled tasks, mixed initiative has
characteristics of a batch scheduler; if the user doesn’t
move already-scheduled tasks, then mixed initiative has
the characteristics of an incremental scheduler.
hhxed-initiative schedulers usually have code to help the
user avoid violating constraints and often allow the user to
override constraint limits. In the batch flavor, if the
models are complete, the editor might invoke iterative-
repair logic to move other tasks and eliminate constraint
violation introduced by a manual edit. In the incremental
flavor, the editor might invoke an incremental scheduler
to make slight adjustments to the user’s input; this feature
is called “snap-to.’’ Additionally, the Ator might use an

incremental engine to suggest times where tasks can be
placed without introducing constraint violations.
Mixed-initiative scheduling does not automatically
provide global optimization. However if the human user
is an expert and the problem is straight-forward, global
optimization might be achieved.
Currently, all human space missions are scheduled using
mixed initiative. The Mars Exploration Rover mission
uses mixed-initiative scheduling as implemented in the
Mixed Initiative Activity Planning Generator (MAPGEN)
(Bresina, 2004) developed by Ames Research Center in
concert with the Jet Propulsion Laboratory.

Reducing Costs
Incremental schedulers have the potential to reduce cost.
Customer participation in ISS operations scheduling is
used to illustrate one way an incremental scheduling
engine might reduce cost. This example assumes the use
of an incremental engine accessed via the web by the users
of the timeline - each user would schedule his tasks
without fear that the tasks will be moved.

Introduction
In this example, use of the scheduling engine is distributed
to the actual customers of the timeline. The customers are
those who benefit by the execution of the timeline; they
may be scientists, technicians, systems operators, or others
who have a stake in the mission. Customers access a
central installation of the scheduling system using remote
access technology. The typical steps required to build a
timeline are listed below.

Flight hardware integration. The customer
community provides descriptions and requirements of
the flight hardware as needed by their tasks. Customer
supplied hardware is integrated into the flight systems.

A scheduling cadre (specialists
who assist the customers) builds equipment mode
models for flight hardware. These mode models define
the resources and constraints of the hardware in all of
its operating modes. Note that the scheduling cadre
does not need to understand the tasks which will use the
equipment.

0 Task models. Using remote access, customers build
their own task models. They have the best knowledge
of their requirements and are in the best position to
build their models. They do not need to know the
details of the resource requirements of the equipment;
that data is in the equipment models built by the
scheduling cadre. For example, a customer requesting
a voice link does not need to request a communication
link or specify bandwidth consumption; this
information is in the voice-link mode model.
Task network models. Using remote access, customers
build their own task network models. Their objectives

0 Equipment models.

drive the temporal relationships between the tasks to be
done. They know the best task ordering (sequenced,
overlapped, during, etc.) to accomplish their goals. A
task network model is the scheduling unit that an
incremental scheduling engine schedules.
Submitting. Using remote access, a customer submits
task network models (the scheduling units) to the
scheduling system. The scheduling system adds each
request to the queue of requests for the incremental
scheduling engine.
Results. The results of each request are displayed at the
user's display device when the request is operated on by
the scheduling engine. If the scheduling engine
scheduled the request, the results are displayed for the
customers; the customer can then accept or reject
(delete) the results. If the engine cannot schedule the
request, an explanation is displayed.

0 Re-submitting. For rejected and failed request, the
customer can modify the request and resubmit.

0 Timeline verification. Since an incremental scheduler
is designed to never overbook resources or violate other
constraints, the scheduling cadre only ensures that the
timeline meets criteria such as safety. The customers
have developed the timeline to meet their objectives; the
cadre does not have the knowledge or the need to
improve the timeline. Vermng the mode models is not
needed since only the cadre can change them.

Using an incremental scheduler to &stribUte timeline
generation to the customers can provide better customer
satisfaction and reduce the size of the scheduling cadre.

Customer participation operations concept
This concept was first proposed in a paper by Jaap and
Muery (Jaap, 2000). An overview of the operations
concept is shown in Figure 1.
The example concept has a weekly scheduling phase that
produces the timeline to be executed during the second
week after it is produced. During any week, three actions
are occurring: the week after next is being scheduled, next
week is being prepared and up-linked, and the current
week is being executed. The preparation phase is closely
linked to what equipment is on board, which is linked to
crew change-out or the arrival of a re-supply ship. In ISS
nomenclature an "expedition" is a period of time that is
punctuated by a crew change-out; nominally, an
expedition is 90 days. The preparation phase for an
expedition precedes the start of the expedition; the
scheduling phase begins two weeks before the expedition
starts and continues for the duration of the expedition.
During the preparation phase, the customers define what
equipment they need and/or will supply and how it is to be
used. The cadre creates the equipment mode models
based on the customers' needs and the cadre's own
knowledge of how the equipment is installed in the ISS.
Models may later be updated by the cadre as needed.
Additionally, a high-level plan for the expedition is

generated based on customer input, programmatic goals
and constraints, and various agreements with the partners.
Based on the expedition plan produced during the
preparation phase, and other information, the cadre would
generate daily allocations per payload for the week to be
scheduled. The allocations are not usage profiles but are
total usage limits of each resource during the planning
week. Once the system is initialized with all the resource
constraints, the customers use the incremental scheduler to
produce a timeline. As always, producing a good timeline
requires attempting to schedule a model, rejecting
unacceptable results, tweakmg the models, and trylng
again. The incremental scheduler places the customer in
the middle of this important iteration loop. No one knows
the payload requirements or what is desired in the timeline
better than the customer, and no one can produce a
timeline as good as the one the customer can produce.
After the customer has completed the scheduling process,
the timeline is delivered to the cadre for timeline
verification. Verification consists of checking that safety
and other criteria are not violated. The cadre will also
visually inspect the timeline and the models.
After the timeline is verified, it is passed to the integration
function where it is integrated with timelines from other
ISS partners. Simultaneously, i t is "published" so that the
customers can review the timeline. If a customer wants to
have the schedule changed, an execution change request is
written and submitted to the execution team. Since the
customer just produced the schedule (of his payload), it is
unlikely that changes will be required.

Evaluation
This operations concept for ISS utilization does not
provide an optimum schedule. This is no worse than the
current operations concept based on mixed-initiative
which also does not provide an optimum schedule. This
operations concept does have the potential to provide a
better schedule to the customers while reducing cost. It
can provide a better schedule because those who have the
best knowledge of objectives are the actual builders of the
timeline. It can reduce cost by reducing the size of the
scheduling cadre - they no longer need to be experts in the
objectives being scheduled.

Astronaut Participation
Astronaut participation will be important on long-duration
human missions. On short flights like those of the Space
Shuttle and intermediate duration missions like an ISS
expedition, the activities of the crew are primarily
scheduled by the ground controllers. Lack of crew
planning autonomy has been a topic of discussion for
decades (Compton, 1983; Hagopian, 1998; Sherman,
1994), and there is anecdotal consensus among astronauts
that crew autonomy is a good way to mitigate the stress of
long-duration missions. Incremental schedulers have the

t ’
.*

potential to allow true astronaut participation in planning
their own daily schedule. The astronaut participation
example is focused on the exploration era when there wdl
be astronauts on the Moon, Mars, and/or on long-duration
cruises.

Introduction
In this example, the scheduling engine would be co-
located with the astronauts, and ground personnel
(controllers, scientists, and others) would remotely access
the extraterrestrial engine. The typical steps needed to
allow astronaut participation in building the timeline are
listed below.

Baseline timeline. Ground personnel build a timeline
using a local engine. The steps to build this timeline
are similar the steps used to build the timeline with
customer participation as discussed above.
Timeline Uplink. The timeline and models are
uplinked to the extraterrestrial engine.
Astronaut additions. Astronauts add to the timeline as
they desire using the extraterrestrial engine. Using an
incremental scheduler ensures that tasks added by the
astronauts do not change or conflict with previously
scheduled tasks.
Re-verification. When time allows, the timeline
modifications are downlinked to the ground and
verified.

Locating the scheduling engine in space will provide the
astronauts with the ability to manage the schedule and will
enable more autonomous crewhehicle operations. The
astronauts WIU be able to make a real-time schedule
change and get immediate feedback that the change is
feasible. When the astronauts are far from home with
significant light-time delays (up to 40 minutes round-trip
to Mars), and the return home time measured in months,
astronaut autonomy will enable the safest, most reliable,
and efficient approach to exploring the cosmos.

Example operations concept
This concept was recently proposed by Jaap and Maxwell
(Jaap, 2005). An overview of this concept is depicted in
Figure 2.
The astronaut participation concept assumes an
installation of the scheduling engine on earth and another
in space. The earth-based engine is used to build baseline
models and timelines. The space-based engine is used to
update the timeline; these updates can be made by the
astronauts or by earth-based personnel using the remote
access capabilities of the incremental scheduler. This
concept provides the astronauts with a complete set of up-
to-date planning information, and allows them to make
any additions they desire to the currently executing
timeline.
The level of astronaut participation in the scheduling
process will be dictated by necessity (e&, responding to

real-time events) as well as by their personal preferences.
In effect, the concept provides an infrastructure which
allows multiple parties (astronauts and ground personnel)
to simultaneously contribute to the development/
maintenance of a single timeline.
Once the planning information is within the scheduling
system at the remote site, it will be available for use by the
onboard astronauts. From a local console, they will be
able to viewhnspect their timelines, make timeline
changes (by deleting and rescheduling), schedule
additional “job jar” type tasks via an interface to the
incremental scheduling engine, and even edit the modeled
tasks (e.g., change a specified task duration). An interface
via a personal data assistant could provide access to the
habitat installation of the scheduling system and allow
adding to the timeline during outside excursions.
Earth-based controllers can also remotely access the
extraterrestrial scheduling system to inspectlverify the
most current timeline information or to contribute timeline
changes. To preserve precious crew time, it is envisioned
that most extensive re-planning efforts will be performed
by the earth-based controllers, except in those cases where
communications outages or delays preclude a timely
ground response to a real-time event. The earth-based
controllers may also perform timeline edits at the crew’s
request .

Evaluation
This operations concept for the exploration of the cosmos
does not provide an optimum schedule. However, it
provides significant participation by the astronauts in the
development of the timeline. Astronaut participation can
ameliorate some of the human factor issues anticipated for
missions exceeding two years in length and where all
voice communication with the earth is excluded by the
light-time delay. Addtionally, the example concept will
allow full autonomy if needed; for example, in case of loss
of communication for a significant duration.

Conclusion
NASA is charting a bold new course to explore the cosmos
beginning with humans returning to the Moon and
anticipating a human visit to Mars. Without significant
advances in operations concepts, these missions will be
more expensive than necessary. Additionally, there is a
compelling need for astronaut autonomy to address human
factor issues and contingency issues introduced by light-
time delays.
Of the three classes of scheduling engines (batch,
incremental, and mixed initiative), incremental engines
offer significant promise to reduce cost and provide
substantial astronaut participation. The attributes of
incremental scheduling engines which enable cost
reduction and astronaut participation are:

The logic of the engine can handle more
completdcomplex models because it schedules only one
model at a time. More complete models mean that less
information is maintained outside of the model and less
mixed-initiative scheduling is needed.

0 The scheduling cadre does not need to be experts on the
objective of the temporal networks being scheduled.
They only need to provide knowledge of the hardware
and the vehiclehabitat systems.
Astronauts do not need to be experts on the tasks within
the models. They can submit any pre-defined model to
the scheduling engine and, since the model contains all
the requirements, produce a valid schedule.

0 Users can add to the timeline without danger of
modifymg what is already scheduled. For example,
ground controllers are assured that astronaut additions
to the timeline do not impact critical tasks.

0 A user who is scheduling a given model does not need
to know anything about other models or what is already
on the timeline.

0 The independent handling of each scheduling request
allows simultaneous remote access to the scheduhng
engine by multiple users. Thus, scheduling can be
distributed to those who have the best knowledge and
vested interest in producing a good timeline.

The examples provided in this paper illustrate the use of
incremental scheduling engines to reduce costs and
provide astronaut participation and possibly astronaut
autonomy. However, significant shifts in operations
concepts will be needed to take full advantage of the
attributes of incremental engines. NASA managers are
challenged to consider the necessary paradigm shifts.

REFERENCES
Allen, J. F.; “Maintaining Knowledge about Temporal
Intervals,” Communications of the ACM, Vol26, No 11. ,
November 1 9 8 3.

Bresina, J.; J h s o n , A,; Morris, P.; Rajan, K.; “Mixed-
Initiative Constraint-Based Activity Planning for Mars
Exploration Rovers,” Fourth International Workshop on
Planning and Scheduling For Space - IWPSS04
Proceedings, Darmstadt, Germany, lune, 2004.

Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; and Stein,
C.; Introduction to Algorithms, 2nd Edition, Sec. 16, The
MIT Press, Cambridge, Massachusetts, 2001.

Compton, W.D., and Benson, C.D., Living and Working
in Space: A History of Skylab, National Aeronautics and
Space Administration, Washington, D.C., 1983.

Davis, E.; Jaap, J.; ‘’The Scheduling Techniques of ESP,”
Second Annual Workshop on Space Operations
Automation and Robotics (SOAR ‘88), Dayton, Ohio,
July1 98 8.

Hagopian, J., Maxwell, T.G., and Nahay, E., “NASA/MIR
Phase 1: A Lesson in Long Duration Mission Planning
and Operations,” in p r o c d n g s of Space Ops 98, the
Fifth International Symposium on Space Mssion
Operations and Ground Data Systems, Tokyo, Japan, June
1998.

Jaap, J.; & Maxwell, T.; “Enabling New Operations
Concepts for Lunar and Mars Exploration,” Space
Technology & Applications International Forum (STAIF-
2005) Proceedings, Albuquerque, New Mexico, 2005.

Jaap, J.; & Muery, K.; ‘Tutting ROSE to Work: A
Proposed Application of a Request-Oriented Scheduling
Engine for Space Station Operations,” Sixth International
Conference on Space Operations (SpaceOps 2000)
Proceedings, Toulouse, France, June 2000.

Rabideau G., Knight R., Chien S., Fukunaga A., &
Givindjee A.; “Iterative Repair Planning for Spacecraft
Operations Using the ASPEN System;” in pr&ngs of
the 5th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (i
SAIRAS), Noordwijk, The Netherlands, June, 1999.

Sherman, J.D., and Maxwell, T.G., “Decentralizing
Astronaut Flight Scheduling on the Space Station,”
Business Case Journal, Volume 2, Issue 1, Summer 1994,
pp. 95-103.

